Fault Localization in Bayesian Networks

نویسندگان

  • Jan Nunnink
  • Gregor Pavlin
چکیده

This paper considers the accuracy of classification using Bayesian networks (BNs). It presents a method to localize network parts that are (i) in a given (rare) case responsible for a potential misclassification, or (ii) modeling errors that consistently cause misclassifications, even in common cases. We analyze how inaccuracies introduced by such network parts are propagated through a network and derive a method to localize the source of the inaccuracy. The method is based on monitoring the BN's 'behavior' at runtime, specifically the correlation among a set of observations. Finally, when bad network parts are found, they can be repaired or their effects mitigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault Identification using end-to-end data by imperialist competitive algorithm

Faults in computer networks may result in millions of dollars in cost. Faults in a network need to be localized and repaired to keep the health of the network. Fault management systems are used to keep today’s complex networks running without significant cost, either by using active techniques or passive techniques. In this paper, we propose a novel approach based on imperialist competitive alg...

متن کامل

Fault Identification using end-to-end data by imperialist competitive algorithm

Faults in computer networks may result in millions of dollars in cost. Faults in a network need to be localized and repaired to keep the health of the network. Fault management systems are used to keep today’s complex networks running without significant cost, either by using active techniques or passive techniques. In this paper, we propose a novel approach based on imperialist competitive alg...

متن کامل

Increasing robustness of fault localization through analysis of lost, spurious, and positive symptoms

This paper utilizes belief networks to implement fault localization in communication systems taking into account comprehensive information about the system behavior. Most previous work on this subject performs fault localization based solely on the information about malfunctioning system components (i.e., negative symptoms). In this paper, we show that positive information, i.e., the lack of an...

متن کامل

The Bayesian Network based program dependence graph and its application to fault localization

Fault localization is an important and expensive task in software debugging. Some probabilistic graphical models such as probabilistic program dependence graph (PPDG) have been used in fault localization. However, PPDG is insufficient to reason across nonadjacent nodes and only support making inference about local anomaly. In this paper, we propose a novel probabilistic graphical model called B...

متن کامل

Rule-based joint fuzzy and probabilistic networks

One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006